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Purpose. Recent advances in combinatorial chemistry and high
throughput screens for pharmacologic activity have created an in-
creasing demand for in vitro high throughput screens for toxicological
evaluation in the early phases of drug discovery.
Methods. To develop a strategy for such a screen, we have conducted
a data mining study of the National Cancer Institute’s Developmental
Therapeutics Program (DTP) cytotoxicity database.
Results. Using hierarchical cluster analysis, we confirmed that the
different tissues of origin and individual cell lines showed differential
sensitivity to compounds in the DTP Standard Agents database. Sur-
prisingly, however, approaching the data globally, linear regression
analysis showed that the differences were relatively minor. Compari-
son with the literature on acute toxicity in mice showed that the
predictive power of growth inhibition was marginally superior to that
of cell death.
Conclusions. This datamining study suggests that in designing a strat-
egy for high throughput cytotoxicity screening: a single cell line, the
choice of which may not be critical, can be used as a primary screen;
a single end point may be an adequate measure and a cut off value for
50% growth inhibition between 10−6 and 10−8 M may be a reasonable
starting point for accepting a cytotoxic compound for scale up and
further study.

KEY WORDS: cultured cells; data mining; correlation; National
Cancer Institute Developmental Therapeutics Program.

INTRODUCTION

Traditionally, selection of lead compounds for develop-
ment has been based on screening for desired pharmacologic
activity in animal models and tissue preparations (1). In the
recent era of rational drug design, specific molecular targets
were defined and primary screening conducted in in vitro
systems (2), followed by more extensive secondary testing in
animal models for evidence of efficacy (3). Safety concerns
typically received little attention. Presently, advances in com-
binatorial chemistry and high throughput, molecular mecha-
nism based screens for pharmacologic activity are producing a

plethora of potential drug candidates (2). Moreover, while the
numbers of potential leads is high, typically they are synthe-
sized in very small amounts; typically # 100 mg (4).

The pharmaceutical industry is thus faced with the chal-
lenge of how to prioritize scale up of potential leads from a
few milligrams available from combinatorial chemistry to the
grams required for secondary testing and safety assessment.
In addition to current strategies for prioritisation such as bio-
transformation (5) and SAR for mutagenicity (6), we believe
there is the potential to conduct a simple in vitro screen for
cytotoxicity at an early stage of discovery.

It is well established that in vivo, there are species dif-
ferences in the susceptibility to toxicity and marked differ-
ences in the susceptibility of different tissues to toxicity.
These differences receive great attention by many scientists
who seek to design screens for toxicity as a replacement for
toxicity testing in animals. Great emphasis is often placed on
the species and tissue of origin of the test system and on the
absolute value for potency against a particular end point (7–
9). Despite the efforts of numerous laboratories over the past
two decades to define in vitro systems which can replace test-
ing in animals, a validated, predictive, species and tissue spe-
cific in vitro screen, which requires small amounts of com-
pound remains largely unrealized (10–11).

A practical way of addressing this challenge is to create a
simple screen which would have some predictive value for
those potential leads which will ultimately cause unacceptable
side effects during either preclinical or clinical development.
In this paper, we propose a strategy for high throughput in
vitro screening. To support these arguments, we have con-
ducted a data mining study drawing on the National Cancer
Institute (NCI) Developmental Therapeutics (DTP) database
for cytotoxicity data (12). The NCI database contains cyto-
toxicity and cytostasis data for 60 well-characterized cell lines
and data for over 30,000 compounds are currently available
on-line (http://dtp.nci.nih.gov/). Our study has been con-
ducted on the “Standard Agents” subset of the DTP data-
base. The Standard Agents data are on 170 compounds se-
lected to include anticancer drugs used in clinical practice and
novel anticancer compounds under development. Serendipi-
tously, the Standard Agents database also contains data on
other therapeutic classes of compounds which are cytotoxic,
so the relevance of the data may be of importance for drugs
in general. To complete our analysis, we have supplemented
the NCI data with data from the literature on murine lethality
for 57 of the Standard Agents.

MATERIALS AND METHODS

Cytotoxicity Data. The technical details of the NCI DTP
screening process and the origins of the cell lines are de-
scribed (12) in the web-site at, http://dtp.nci.gov/docs/cancer/
cancer_screen.html. The Standard Agents database contains
cytotoxicity data for 170 compounds (listed in: http://
dtp.nci.nih.gov/docs/cancer/searches/standard_agent_
table.html).

Mean log growth inhibitory (GI) and log cytolytic (LC)
concentration data for the 170 Standard Agents for the indi-
vidual cell lines from each tissue type, [melanoma, non-small
cell lung carcinoma (NSCL), small cell lung (SCL), renal,
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breast, colon, prostate, ovarian, central nervous system
(CNS), leukemia/lymphoma and murine] as well as individual
cell line data for A549 (NSCL), M14 (melanoma), MOLT4
and CCRF-CEM (human lymphoma) and P388 (murine lym-
phoma) were downloaded into Excel 97 SR1 spreadsheet for-
mat (Microsoft, Inc. Redmond WA). For a few of the com-
pounds, there are no data available for all the tissues or cell
lines but data for a minimum of 162 compounds were avail-
able for this analysis.

Mouse LD10

Literature searches of the Medline database (1966–July
1999) and Chemical Abstracts database (1967–July 1999)
were conducted to obtain references containing murine LD10
data, using appropriate keywords. Additional key articles
were obtained from the cited references provided in these
articles. The final set of 9 papers provided LD10 data for 57
compounds (Table 1). LD10s quoted in these papers varied
depending on the strain, route of administration and dosing
schedule used, but as far as possible, a figure corrected for
single daily parenteral dose in mg/kg or mg/ m2 (the latter
being converted to mg/kg for this analysis) was obtained.
When multiple values were found, the lowest values were
brought forward. Data for all compounds was converted to
moles/kg using molecular weights obtained from the Standard
Agents database and finally, to allow direct comparison to
the log LC50 and log GI50 data from the Standard Agents
database, the LD10 data were log transformed. The com-

pounds and the LD10 values included in our study are listed
in Table 1.

Data Analysis

Hierarchical cluster analysis was performed using Statis-
tica v5.1(StatSoft Inc, Tulsa OK). Clustering was determined
using complete linkages and Euclidean distance (d). The re-
sults were plotted as normalized vertical clustering trees [d
(link)/d (max)] ×100.

Scatter plots were made with Excel 97 SR1 (Microsoft)
or TableCurve v1.0 (Jandel Scientific, San Rafael CA) and
linear regression analysis was done with TableCurve. Pearson
correlation analysis was done with SigmaStat v1.0 (Jandel)
and t tests were done manually from values for standard error
of the mean (sem) obtained from TableCurve. P values >0.05
were accepted as significant.

RESULTS

Differences among the Tissues of Origin and Among
Individual Cell Lines

From the in vitro cytotoxicity data in the DTP Standard
Agents database we have analyzed the 50% lethal concentra-
tion (LC50) and the 50% growth inhibitory concentration
(GI50) only. The data cover 11 different tissues of origin and
up to 60 individual cell lines.

To determine if there are differential responses among

Table 1. Compounds for Which Murine LD10 Data Were Analyzed

Compound
Log mouse LD10

(moles/kg) Reference Compound
Log mouse LD10

(moles/kg) Reference

3-deazauridine −3.1 21,22 hexamethylene melamine −3.5 25
5-azacytidine −4.3 21,23 hydroxyurea −2.8 25
5-azadeoxycytidine −3.9 24 ICRF-159 −2.7 21,23
5-FU −3.3 22,25 amsacrine −5.1 21,22,26
5-FUDR −3.4 22,25 maytansine −6.2 21,22
6 mercaptopurine −3.7 24,25 melphelan −4.9 26,28
actinomycin D −6.8 21,22,25,26 methotrexate −5.4 22,25
anguidine −4.6 22 methyl-CCNU −3.7 21,23
aphidicolin glycinate −3.6 24 methyl-GAG −3.8 22,28
acivicin −5.0 24 mitomycin C −5.2 22,26,27
BCNU −4.3 22,26 mitramycin −6.0 23
bleomycin −4.9 21,23,24,26 PALA −2.5 21,22
busulphan −3.7 25 piperazinedione −4.6 21
carboplatin −3.4 24 porfiromycin −3.7 21,25
CCNU −3.6 21,23 rhizoxin −5.2 24
chlorambucil −4.5 25 R-methyl formamide −2.4 25
chlorozotocin −4.1 21,22 soluble Baker’s antifol −4.0 21
cisplatin −4.9 21,24,26 teroxirone −3.3 24
cyclophosphamide −4.1 22,24,25 thalacarpine −3.5 21,22
cytocine arabinoside −2.7 24 thioguanine −5.1 25
daunorubicin −5.5 23 thio-tepa −4.7 22,25
doxorubicin −5.3 22,26 topotecan −4.3 29
DTIC −3.7 23 triethylenemelamine −5.3 25
brequinar −3.5 24 uracil nitrogen mustard −5.1 25
flavoneacetic acid ester −3.1 24 vinblastin sulphate −6.7 26,28
fludarabine phosphate −2.7 24 vincristine sulfate −7.7 22,28
ftorafur −2.9 27 etoposide −5.2 24,26
galluim nitrate −3.7 21,22 Yoshi-864 −3.9 23
guanazole −2.5 23
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the different tissues of origin, the data for average cytotoxicity
as measured by LC50 for each tissue of origin were analyzed
by hierarchical cluster analysis (HCA). HCA (Figure 1a)
showed that the tissues fell into three clusters; melanoma
grouped with small cell lung carcinoma, murine lymphoid
cells grouped with the human leukemia/lymphoma cells and
the remaining tissues formed the third group.

To determine if these groupings were an artifact of ana-
lyzing average data for the different tissues of origin, LC50
data for individual cell lines selected from these three broad
clusters were analyzed in a similar manner. The cell lines:
P-388 - murine lymphoma; MOLT 4 and CCRF-CEM human
lymphoma/leukemia; M14–melanoma and A549–non-small
cell lung carcinoma (NSCLC) were chosen on the basis of
their falling into the three “tissue of origin” clusters found by
HCA for the tissue data. Two leukemia/lymphoma lines
MOLT4 and CCRF-CEM were chosen to allow comparison
within a cluster and P388 was selected because it is of murine,
rather than human origin. A549 and M14 cells were chosen
because they are the most widely studied cells of the non-
small cell lung carcinoma and melanoma panels, respectively.
HCA by cell lines revealed four clusters, shown in Figure 1b.
P388 grouped with A549 non-small cell lung carcinoma cells
rather than the human leukemia/lymphoma cells and M14
was a wide-outlier.

For the GI50 data, three clusters were found for the
tissues and cells (Figure 1c and d). However, the groupings
were different from those found using the LC50 data, indi-
cating that the tissues and cells responded differentially in
terms of growth inhibition and cytolysis.

The results of hierarchical cluster analysis, at face value,
support the contention that data from a single tissue of origin
or single cell line may be inadequate to describe the in vitro
cytotoxicity for the Standard Agents. However, multivariate
techniques are, by design, intended to emphasize the differ-
ences among the data. To address the relevance of the differ-
ences, the LC50 data for the mean values for 10 of the tissue
types were plotted as a function of human NSCLC (Figure
2a). Although there was some scatter in the data, there was an
obvious linear trend. These data were subjected to linear re-
gression analysis on a tissue by tissue basis (Table 2). In each
case, the data for one tissue type was found to be linearly
related to all the other tissue types and there were only small,
albeit statistically significant differences in the slopes and in-
tercepts when compared to the expectation values (1 and 0,
respectively) by one tailed t test.

To determine if the lack of major differences among the
tissue types was an artifact of analyzing mean data, LC50 data
for the 4 other cell lines were plotted as a function of A549,
Figure 2b. Although there was some scatter, M14 showing the

Fig. 1. a) Hierarcial cluster analysis (HCA) for mean cytotoxicity data as measured by LC50 for each tissue of origin. b) HCA to determine
if the groupings in Fig 1a were an artifact of analysis of mean data. LC50 data for individual cell lines selected from the clusters shown in Figure
1a. c) HCA for mean cytotoxicity data as measured by GI50 for each tissue of origin. d) HCA to determine if the groupings in Fig 1a were
an artifact of analysis of mean data. GI50 data for individual cell lines selected from the clusters shown in Figure 1c.
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greatest, there was a strong linear relationship between A549
and the other cell lines. Linear regression analysis for all the
individual cell lines confirmed the linear relationship (Table
3). In all cases, a statistically significant linear relationship was
found between the data for each of the different cell lines and
again, there were small but significant differences in slope or
intercept.

Differences Between GI50 and LC50

To determine if the choice of end point affected the re-
sults of the linear regression analysis, the analyses shown in
Figures 2a and 2b and Tables 2 and 3 were repeated for the
GI50 data (Figures 2c and 2d and Table 3 ). The analyses with
GI50 data gave results similar to LC50, with linear relation-
ships being found as well as small but statistically significant
differences between the measured values and expectation val-
ues for slope and intercept. The GI50 values tended to be
lower than LC50 values.

Predictive Power

To determine the predictive power of GI50 and LC50
data for in vivo data, correlation analysis between cytotoxicity
and murine LD10 was performed for data from the 5 cell
lines. As shown in Table 4, there was a statistically significant
correlation between LC50 and LD10 and also between GI50
and LD10 (Pearson correlation) for each of the tissues and
cell lines. Regression analysis revealed that the data could be
modeled by a linear function, but the r2 values were not very
high. However, as reflected by the larger Pearson correlation
coefficients and r2 values, GI50 was a marginally better pre-
dictor of LD10 than was LC50. Using the linear fit to estimate
the rates of false positives (i.e., in vitro toxic potency over-
estimating the in vivo toxic potency) and false negatives, be-
tween 5 and 18% of compounds were divergent greater than
± one standard error of the mean from the predicted values.
However, only 0–4% of compounds were divergent greater than
± 2 times the sem, indicating a reasonable predictive power.

Fig. 2. a) Mean LC50 data for the 10 tissue types plotted as a function of non-small cell lung carcinoma. b) LC50 data for MOLT4, P388,
CCRF-CEM and M14 plotted as a function of LC50 for A549. c) Mean GI50 data for the 10 tissue types plotted as a function of non-small cell
lung carcinoma. b) GI50 data for MOLT4, P388, CCRF-CEM and M14 plotted as a function of LC50 for A549.
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As seen in Figure 3, GI50 has an approximately 5 log
wider dynamic range than LC50 for A549 cells. There was no
remarkable threshold, but interestingly only 2 of 35 clinically
useful antineoplastics had log LC50 values below −5 M and
only 5 of 34 had log GI50 values below −8 M.

DISCUSSION AND CONCLUSIONS

We have conducted a data mining study of the DTP Stan-
dard Agents database in an attempt to address some of the
issues in designing a primary screen for cytotoxicity such as
the choice of tissue of origin, specific cell line and measure of
cytotoxicity. We compared data for GI50 and LC50 for 170
compounds, across cell lines derived from 11 tissue types and
have studied the data for 5 cell lines in detail. Although the
DTP screen is primarily directed toward aiding discovery of
antineoplastics, the database contains data for compounds
such as rapamycin and colchicine, which are not used as an-
tineoplastics. The compounds also cover a wide range of the
recognized cytotoxic agents, including:, alkylating agents
(melphelan); anti-DNA or anti-DNA/RNA metabolites
(thiopurine or methotrexate); inhibitors of topoisomerase I
(topotecan) and topoisomerase II (amsacrine); anti-mitotics
(colchicine) and inducers of apoptosis (cytarabine). Thus, al-
though the results of our analysis are most applicable to drugs
intended to be cytotoxic, they may have some relevance to
pharmaceuticals in general.

Choice of Tissue of Origin and Cell Line

As shown by hierarchical cluster analysis (Figure 1),
there are differences among the responses of the different

tissues and cell lines to the Standard Agents, in agreement
with the literature. The expression of the multidrug resistance
gene MRP in the 60 DTP cell lines was studied and it was
found that the CNS and lung carcinoma lines express a 14 fold
variation in MRP expression (13). Metallothionine (MT) ex-
pression was studied in 53 of the cell lines and a 400 fold range
in basal MT expression was determined (14).The latter au-
thors also showed that basal MT expression correlated with
sensitivity of the different cell lines to metal containing com-
pounds.

The conclusion that the different tissues of origin and
individual cell lines show differential responses to cytotoxic
compounds seems acceptable but one is left with the question
of whether these differences are important when designing a
primary screen. As shown in Tables 2 and 3, linear regression
analysis whether conducted on a tissue by tissue or individual
cell line basis always revealed a strong, statistically significant
linear relationship between tissues and between cell lines.
These analyses indicate that the differences revealed by HCA
and reported previously are subtle and may not be important
when designing a primary screen.

Choice of End Point and Predictive Power

To determine if the choice of cytotoxic end point influ-
enced the conclusions of the screen, differences between the
LC50 and GI50 data were examined. Although GI50 corre-
lated with LC50, the correlation coefficients were relatively
low and the linear fits were relatively poor (Table 3). Use of
the analytical tool COMPARE (15) indicated that there are
greater differences among the cell lines for GI50 data than for

Table 3. Linear Regression Analysis for LC50 for 5 Different Cell Lines as a Function of LC50 for A549, M14, CCRF-CEM and P388 Cells

Cell type
(abscissa)

A549 (ordinate) M14 (ordinate) CCRF-CEM (ordinate) P388 (ordinate)

r2
Slope
± sem

Intercept
± sem r2

Slope
± sem

Intercept
± sem r2

Slope
± sem

Intercept
± sem r2

Slope
± sem

Intercept
± sem

A549 — — — 0.72 0.69 ± 0.03* −0.74 ± 0.14* 0.80 0.84 ± 0.03* −0.66 ± 0.11* 0.96 0.95 ± 0.15* −0.14 ± 0.05*
M14 0.72 1.04 ± 0.05 −0.30 ± 0.18 — — — 0.56 0.86 ± 0.06* −1.01 ± 0.21* 0.71 1.00 ± 0.05 −0.40 ± 0.19*
MOLT4 0.96 0.96 ± 0.02* −0.08 ± 0.06 0.67 0.66 ± 0.04* −0.83 ± 0.15* 0.81 0.83 ± 0.03* −0.63 ± 0.11* 0.95 0.93 ± 0.02* −0.16 ± 0.06*
CCRF-CEM 0.96 0.96 ± 0.01* −0.05 ± 0.05 0.56 0.65 ± 0.05* −0.76 ± 0.19* — — — 0.97 0.94 ± 0.04* −0.11 ± 0.13
P388 0.96 1.01 ± 0.02 0.01 ± 0.06 0.71 0.71 ± 0.04* −0.71 ± 0.15* 0.79 0.86 ± 0.03* −0.62 ± 0.12* — — —

* Statistically different from expectation value for y 4 mx + b where m 4 1 and b 4 0 (P < 0.05, One tailed t test).

Table 2. Linear Regression Analysis for Mean LC50 for Different Tissues as a Function of Mean LC50 for Non-Small Cell Lung Carcinoma,
Melanoma, Lymphoid and Murine Cells

Tissue type

NSCL Melanoma
Human

leukemia/lymphoma Murine lymphoma

r2
Slope
± sem

Intercept
± sem r2

Slope
± sem

Intercept
± sem r2

Slope
± sem

Intercept
± sem r2

Slope
± sem

Intercept
± sem

Leukemia 0.95 0.92 ± 0.02* −0.09 ± 0.06 0.85 0.77 ± 0.03* −0.49 ± 0.10* — — — 0.95 1.00 ± 0.02 −0.07 ± 0.04
CNS 0.99 1.01 ± 0.01 0.03 ± 0.02 0.95 0.88 ± 0.02* −0.29 ± 0.06* 0.95 1.05 ± 0.02* −0.04 ± 0.07 0.94 1.02 ± 0.02 −0.08 ± 0.07
Melanoma 0.94 1.10 ± 0.02 0.14 ± 0.08 — — — 0.86 1.10 ± 0.04* −0.04 ± 0.13 0.84 1.07 ± 0.04 −0.09 ± 0.13
Ovarian 0.99 0.99 ± 0.01 0.01 ± 0.03 0.90 0.84 ± 0.02* −0.37 ± 0.08* 0.96 1.03 ± 0.02 −0.02 ± 0.06 0.97 1.01 ± 0.02 −0.06 ± 0.06
Renal 0.99 1.02 ± 0.01* 0.02 ± 0.03 0.95 0.88 ± 0.02* −0.30 ± 0.07* 0.94 1.05 ± 0.02* −0.05 ± 0.07 0.93 1.02 ± 0.02 −0.10 ± 0.08
Breast 0.99 1.00 ± 0.01 0.02 ± 0.00 0.93 0.86 ± 0.02* −0.31 ± 0.07* 0.95 1.04 ± 0.02* −0.03 ± 0.06 0.95 1.01 ± 0.02 −0.07 ± 0.07
Colon 0.99 1.01 ± 0.01 0.02 ± 0.03 0.92 0.87 ± 0.02* −0.33 ± 0.08* 0.95 1.05 ± 0.02* −0.02 ± 0.06 0.94 1.02 ± 0.02 −0.06 ± 0.07
Prostate 0.99 0.99 ± 0.01 −0.01 ± 0.03 0.92 0.85 ± 0.02* −0.33 ± 0.08* 0.95 1.02 ± 0.02 −0.06 ± 0.07 0.94 0.99 ± 0.02 −0.11 ± 0.07
SCL 0.96 1.06 ± 0.02 0.08 ± 0.06 0.98 0.95 ± 0.01* −0.13 ± 0.04* 0.88 1.07 ± 0.03* −0.07 ± 0.11 0.87 1.04 ± 0.03 −0.11 ± 0.11
NSCL — — — 0.94 0.92 ± 0.02* −0.03 ± 0.00* 0.95 1.03 ± 0.02 −0.06 ± 0.06 0.95 1.00 ± 0.02 −0.11 ± 0.07
Murine 0.95 0.94 ± 0.02 −0.06 ± 0.06 0.84 0.78 ± 0.03* −0.48 ± 0.11* 0.98 1.01 ± 0.01 0.04 ± 0.04 — — —

* Statistically different from expectation value for y 4 mx + b where m 4 1 and b 4 0 (P < 0.05, One tailed t test).
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LC50 data. A “fingerprint” analysis using the growth inhibi-
tory data was conducted in 60 cell lines for 60,000 compounds
and the data was found to contain patterns that “were re-
markably rich” (16) and the data was found to accurately

predict the mechanism of action for 141 known compounds
with approximately 90% accuracy (17).

As seen in Table 4, the absolute predictive power of the
in vitro data for in vivo toxicity was also rather weak. There

Table 4. Pearson Correlation and Linear Regression for Log LD10 (moles/kg) as a Function of Cell Type

Cell type
(LC50

(ordinate)

Log LD10 (abscissa)

# of
cpnds

Pearson
correlation
coefficient P >

Linear
regression

r2 Slope Intercept

% Compounds
> + 1 sem from
predicted value

% Compound
< − 1 sem from
predicted value

A549 57 0.54 0.001 0.29 0.54 ± 0.11 −2.34 ± 0.42 14 12
M14 56 0.60 0.001 0.36 0.51 ± 0.09 −2.28 ± 0.38 11 14
MOLT4 57 0.53 0.001 0.28 0.54 ± 0.12 −2.35 ± 0.43 14 11
CCRF-CEM 57 0.34 0.011 0.27 0.67 ± 0.15 −0.50 ± 0.64 5 5
P388 54 0.53 0.001 0.28 0.53 ± 0.12 −2.33 ± 0.44 9 13

Cell type
GI50

(ordinate)
# of

cpnds

Pearson
correlation
coefficient P >

Linear
regression

r2 Slope Intercept

% Compounds
> + 1 sem from
predicted value

% Compound
< − 1 sem from
predicted value

A549 57 0.65 0.001 0.42 0.39 ± 0.06 −2.13 ± 0.35 16 16
M14 56 0.67 0.001 0.45 0.40 ± 0.06 −2.09 ± 0.034 13 16
MOLT4 57 0.70 0.001 0.49 0.42 ± 0.06 −1.83 ± 0.35 18 14
CCRF-CEM 57 0.68 0.001 0.46 0.41 ± 0.06 −1.86 ± 0.36 16 16
P388 53 0.63 0.001 0.40 0.38 ± 0.07 −1.91 ± 0.40 11 13

Fig. 3. Data for A549, LC50 (diamonds) and GI50 (triangles) plotted as a function of rank cytotoxic potency. The resultant curves are annotated
for the position of approved antineoplastic drugs: PALA, 1; hydroxyurea, 2; 5-FUDR, 3; 5-FU, 4; fludarabine phosphate, 5; etoposide, 6;
thio-tepa, 7; 6 mercaptopurine, 8; chlorambucil, 9; cytocine arabinoside, 10; procarbazine, 11; iphosphamide, 12; cisplatin, 13; BCNU, 14;
vincristine sulfate, 15; CCNU, 16; methotrexate, 17; cyclophosphamide, 18; carboplatin, 19; busulphan, 20; melphelan, 21; thioguanine, 22;
topotecan, 23; bleomycin, 24; paclitaxel, 25; doxorubicin , 26; mitomycin C, 27; teniposide, 28; tamoxifen, 29; daunorubicin , 30; amsacrine, 31;
mitoxantrone, 32 vinblastin sulphate, 33; actinomycin D, 34.
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are many possible reasons for the lack of correlation, fore-
most of which are the limitations inherent to continuous cell
lines in culture. As described by Robert (18) in his critique of
the NCI screening process, these include: limited drug-
metabolic activity and the lack of influence of absorption;
tissue disposition and elimination; lack of representation of
the full range of the in vivo phenotype and limitations of the
relevance of the in vitro endpoint to the in vivo pharmacology
or toxicology.

Recommendation for a Primary Screen

Based on the results of our data mining study and the
assumption that a primary screen for cytotoxicity will be de-
ployed early in the drug discovery process, we feel some rec-
ommendations are warranted. In simplest terms, the defini-
tion of screening is straightforward, “a system for examining
and separating into different groups” (19). In our experience
in drug discovery, primary screening generally means select-
ing for an activity that is considered relevant to the desired
therapeutic outcome, e.g., inhibiting a specific enzyme, and
then choosing the most potent compounds of a series which
express the selected activity. The stringency or fineness of the
mesh of the screen is usually adjusted so as to provide no
more than a manageable number of hits. In primary screening
for desired activity, seemingly little concern is given to miss-
ing important leads that may be less potent. Such missed
opportunities can be considered false negatives. Secondary or
tertiary screens which address selectivity (often mislabeled
specificity) are conducted to choose those hits which express
a narrow range of pharmacologic activity. In this manner false
positives are removed. It is only after a lead compound has
passed a number of relatively low stringency screens that it
will be scaled up for more extensive testing.

We propose that a similar approach can be taken for
primary screening for toxicity and that in vitro cytotoxicity
can serve this purpose in drug discovery and development.
Applying this approach is a departure from widely held think-
ing about toxicity. The reason for this rests not in the rel-
evance of the screen, but in the objectives of screening and
when the screen is deployed in the Drug Discovery Cascade.
A typical Drug Discovery Cascade is shown in Table 5. The
cascade shown in the table, is intended to provide a frame-
work for discussion and is not intended to be a definitive
example representative of the strategy followed by any spe-
cific company, although the numbers and amounts are within
an order of magnitude for most large pharmaceutical compa-
nies.

Based on the assumption that a primary screen for tox-
icity will be applied early in the Discovery Cascade, we can
define some of the characteristics that a screen should have.
High throughput (>100 compounds/yr); low compound re-
quirement; and relatively low expense are self evident. Re-
producibility over time is also essential so that data obtained
from one set of compounds, particularly a validation or train-
ing set of compounds, can be used for classification of un-
knowns. This criterion can most easily be met by using
banked cell lines. Prediction of potential for undesired in vivo
effect is essential. If the screen cannot provide a forecast of
some defined adverse effect it has no rationale and hence
cannot be used to define rate of false positives and negatives.

Finally, defined rates of false positives and negatives are
necessary so that a proper “weighting” of the screen data can
be made when combining the results of the screen for toxicity
with all the other data available for prioritization.

Although there were differences among the responses of
the various tissues of origin and cell lines, when viewed glo-
bally the differences were not of great importance. We thus
conclude that a single cell line is adequate for a primary
screen and that the choice of the particular cell line is unlikely
to be important.

The recommendation for choosing a single simple end
point for a primary screen in drug discovery and development
is based both on economic and scientific grounds. Regarding
economics, as defined here, a primary screen must be high
throughput, have a low compound requirement and be inex-
pensive to run. A similar conclusion has been reached to
advocate using cell proliferation in a single “rapidly dividing
transformed, undifferentiated cell line” as the first stage in
acute toxicity testing, followed by more definitive models
(20).

We feel that interpretation of GI50 data should depend
on what other information is available about an individual
compound. If nothing is known about the pharmacologic po-
tency of the compound one can only make comparisons to
compounds which have already been studied in depth, a ref-
erence set (or more loosely a validation set). The reference set
could be studied entirely de novo or, preferably, be built up as
an extension of an existing data set. This is the principle rea-
son why we would advocate using one of the cell lines in the
DTP screen. In this way the benefits of huge investment made
to date in over 60,000 compounds by the DTP can be reaped
by other laboratories.

An example of how such a reference set can be used is
illustrated by Figure 3 which highlights data for 35 marketed

Table 5. The Drug Discovery Cascade

Stage Research activity Objectives

Number of
compounds

to be
dealt with

Number of
compounds
emerging

Amount of
compound
available
for study

I Combinatorial Chemistry or Natural Products Generate Candiate Pharmacophores 100K–1M 100K–1M 1–10 mg
II Primary Screening for Pharmacology Identify Candidate Pharmacophores Hits 100K–1M 1–100
III Primary Medicinal Chemistry Expand of Number of Pharmacophores 1–100 100–10K 100 mg
IV Secondary Screening for Pharmacology Pharmacologic Selectivity of Hits 100–10K 1–100
V Secondary Medicinal Chemistry Expand Supply of Hits 1–100 1–100 1–10 g
VI Tertiary Pharmacology Testing Lead Compound Selection 1–100 1–10
VII Synthetic Chemistry Supply of Lead Compound 1–10 1–10 10–100 g
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antineoplastic drugs. Only 5 of 35 marketed antineoplastics
have log GI50 values less than -8. Thus, if no other informa-
tion is available, setting a GI50 of 10−8 M as an initial cut off
will probably avoid throwing away the baby with the bath
water for most therapeutic targets. This cut off value would, of
course be adjusted so as to keep the numbers of compounds
“passing” the screen manageable and could be adjusted as
additional information became available about the chemical
or therapeutic class of compounds under study.

In conclusion, our datamining study of the DTP Standard
Agents database has shown that when viewed in the context
of a primary screen for pharmaceutical toxicity, the choice of
cell line for the system may not be of critical importance and
that a simple system for measuring growth inhibition can be
of value in ranking compounds on the basis of toxic potential.
Moreover, in the absence of efficacy data a log GI50 ≅ –8 M
is a good starting point for a cut off value for accepting a
compound for scale up and further study.

ACKNOWLEDGMENTS

The authors of this paper would like to thank the NCI for
producing a valuable database (DTP) and making it publicly
available. This work was supported by SmithKline Beecham
Pharmaceuticals.

REFERENCES

1. D. Lednicer. Exploration of a chemical series as a drug discovery
strategy. Drug Design Del. 78:2–69 (1987).

2. K. S. Lam. Application of combinatorial library methods in can-
cer research and drug discovery. Anti-Cancer Drug Design 12:
145–167 (1997).

3. D. R. Algate. Application of the pharmacological screening pro-
cess. Drug Metab. Rev. 22:809–820 (1990).

4. R. A. Fecik, K. E. Frank, E. J. Gentry, S. R. Menon, L. A.
Mitscher, and H.Telikepalli. The search for orally active medica-
tions through combinatorial chemistry. Med. Res. Rev. 18:149–
185 (1998).

5. A. D. Rodrigues. Preclinical drug metabolism in the age of high-
throughput screening: An industrial perspective. Pharm. Res. 14:
1504–1510 (1997).

6. G. Klopman and H. S. Rosenkranz. International Commission
for Protection Against Environmental Mutagens and Carcino-
gens. Approaches to SAR in carcinogenesis and mutagenesis.
Prediction of carcinogenicity/mutagenicity using MULTI-CASE.
Mutation Res. 305:33–46 (1994).

7. A. Guillouzo. Liver cell models in in vitro toxicology. Environ
Health Pers. 106(supp 2): 511–532 (1998).

8. Z. Djuric, T. H. Corbett, F. A. Valeriote, L. K. Heilbrun, and L.
H. Baker. Detoxification ability and toxicity of quinones in
mouse and human tumor cell lines used for anticancer drug
screening. Cancer Chemother. Pharmaco. 36:20–26 (1995).

9. R. G. Ulrich, J. A. Bacon, C. T. Cramer, G. W. Peng, D. K.
Petrella, R. P. Stryd, and E. L. Sun. Cultured hepatocytes as
investigational models for hepatic toxicity; practical applications
in drug discovery and development. Toxicol. Lett. 82:107–115
(1995).

10. F. Ballet. Hepatotoxicity in drug development: detection, signifi-
cance and solutions. J. Hepatol. 26(supp 2):26–36 (1997).

11. J. W. Harbell, S. W. Koontz, R. W. Lewis, D. Lovell, and D.
Acosta. IRAG working group 4. Cell cytotoxicity assays. Inter-
agency regulatory alternatives Group. Food Chem. Toxicol. 35:
79–126 (1997).

12. A. Monks, D. A. Scudiero, G. S. Johnson, K. D. Paull, and E. A.
Sausville. The NCI anti-cancer drug screen: a smart screen to
identify effectors of novel targets. Anti-Cancer Drug Design 12:
533–541 (1997).

13. M. Alvarez, R. Robey, V.Sandor, K.Nishiyama, Y.Matsumoto, K.
Paull, S. Bates, and T. Fojo. Using the National Cancer Institute
anticancer drug screen to assess the effects of MRP expression on
drug sensitivity profiles. Mol. Pharm. 54:802–814 (1998).

14. E. S. Woo, A. Monks, S. C. Watikins, A. S. Wang, and J. S. Lazo.
Diversity of metallothionine content and subcellular localization
in the National Cancer Institute tumor panel. Cancer Chemother.
Pharmacol. 41:61–68 (1997).

15. K. D. Paull, R. H. Shoemaker, L. Hodes, A. Monks, D. A. Scudi-
ero, L. Rubinstein, J. Plowman, and M. R. Boyd. Display and
analysis of patterns of differential activity of drugs against human
tumor cell lines: development of Mean Graph and COMPARE
algorithm. J Nat. Cancer Inst. 81:1088–1092 (1989).

16. J. N. Weinstein, T. G. Myers, P. M. O’Connor, S. H. Friend, A. J.
Fornace Jr., K. W. Kohn, T. Fojo, S. E. Bates, L. V. Rubinstein,
N. L. Anderson, J. K. Buolamwini, W. W. van Osdol, A. P.
Monks, D. A. Scudiero, D. A. Sausville, D. W. Zaharvitz,
B. Bunow, V. N. Viswanadhan, G. S. Johnson, R. E. Wittes, and
K. D. Paul. An information-intensive approach to the molecular
pharmacology of cancer. Science 275:343–349 (1997).

17. A. D. Koutsoukos, L. V. Rubinstein, D. Faraggi, R. M. Simon, S.
Kalyandrug, J. N. Weinstein, K. W. Kohn, and K. D. Paull. Dis-
crimination techniques applied to the NCI in vitro anti-tumor
drug screen: predicting biochemical mechanisms of action. Statis-
tics Med. 13:719–730 (1994).
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